E.PubMed

Permanent URI for this communityhttps://dspace.psgrkcw.com/handle/123456789/5112

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    ASSESSING THE ECOLOGICAL IMPACT OF PESTICIDES/HERBICIDES ON ALGAL COMMUNITIES: A COMPREHENSIVE REVIEW
    (Elsevier B.V, 2024-03) Mathiyazhagan, Narayanan; Kesavan, Devarayan; Monu, Verma; Manickam, Selvaraj; Hamed A, Ghramh; Sabariswaran, Kandasamy; Department of Biotechnology; Sabariswaran, Kandasamy
    The escalating use of pesticides in agriculture for enhanced crop productivity threatens aquatic ecosystems, jeopardizing environmental integrity and human well-being. Pesticides infiltrate water bodies through runoff, chemical spills, and leachate, adversely affecting algae, vital primary producers in marine ecosystems. The repercussions cascade through higher trophic levels, underscoring the need for a comprehensive understanding of the interplay between pesticides, algae, and the broader ecosystem. Algae, susceptible to pesticides via spillage, runoff, and drift, experience disruptions in community structure and function, with certain species metabolizing and bioaccumulating these contaminants. The toxicological mechanisms vary based on the specific pesticide and algal species involved, particularly evident in herbicides' interference with photosynthetic activity in algae. Despite advancements, gaps persist in comprehending the precise toxic effects and mechanisms affecting algae and non-target species. This review consolidates information on the exposure and toxicity of diverse pesticides and herbicides to aquatic algae, elucidating underlying mechanisms. An emphasis is placed on the complex interactions between pesticides/herbicides, nutrient content, and their toxic effects on algae and microbial species. The variability in the harmful impact of a single pesticide across different algae species underscores the necessity for further research. A holistic approach considering these interactions is imperative to enhance predictions of pesticide effects in marine ecosystems. Continued research in this realm is crucial for a nuanced understanding of the repercussions of pesticides and herbicides on aquatic ecosystems, mainly algae.
  • Thumbnail Image
    Item
    PRESENT STATUS OF INSECTICIDE IMPACTS AND ECO-FRIENDLY APPROACHES FOR REMEDIATION-A REVIEW
    (Elsevier Inc, 2024-01) Selvaraj, Barathi; Nadana, Sabapathi; Sabariswaran, Kandasamy; Jintae, Lee; Department of Biotechnology; Sabariswaran, Kandasamy
    Insecticides are indispensable for modern agriculture to ensuring crop protection and optimal yields. However, their excessive use raises concerns regarding their adverse effects on agriculture and the environment. This study examines the impacts of insecticides on agriculture and proposes remediation strategies. Excessive insecticide application can lead to the development of resistance in target insects, necessitating higher concentrations or stronger chemicals, resulting in increased production costs and disruption of natural pest control mechanisms. In addition, non-target organisms, such as beneficial insects and aquatic life, suffer from the unintended consequences of insecticide use, leading to ecosystem imbalances and potential food chain contamination. To address these issues, integrated pest management (IPM) techniques that combine judicious insecticide use with biological control and cultural practices can reduce reliance on chemicals. Developing and implementing selective insecticides with reduced environmental persistence is crucial. Promoting farmer awareness of responsible insecticide use, offering training and resources, and adopting precision farming technologies can minimize overall insecticide usage.
  • Thumbnail Image
    Item
    RECENT TRENDS IN POLYCYCLIC AROMATIC HYDROCARBONS POLLUTION DISTRIBUTION AND COUNTERACTING BIO-REMEDIATION STRATEGIES
    (Elsevier Ltd, 2023-10) Selvaraj, Barathi; Gitanjali, J; Gandhimathi, Rathinasamy; Nadana, Sabapathi; Aruljothi, K N; Jintae, Lee; Sabariswaran, Kandasamy; Department of Biotechnology; Sabariswaran, Kandasamy
    Polycyclic aromatic hydrocarbons (PAHs) are distributed worldwide due to long-term anthropogenic pollution sources. PAHs are recalcitrant and highly persistent in the environment due to their inherent properties, such as heterocyclic aromatic ring structures, thermostability, and hydrophobicity. They are highly toxic, carcinogenic, immunotoxic, teratogenic, and mutagenic to various life systems. This review focuses on the unique data of PAH sources, exposure routes, detection techniques, and harmful effects on the environment and human health. This review provides a comprehensive and systematic compilation of eco-friendly biological treatment solutions for PAH remediation, such as microbial remediation approaches utilizing microbial cultures. In situ and Ex situ bioremediation of PAH methods, including composting land farming, biopiles, bioreactors bioaugmentation, and phytoremediation processes, are discussed in detail, as is a summary of the factors affecting and limiting PAH bioremediation. This review provides an overview of emerging technologies that use multi-process combinatorial treatment approaches and answers to generating value-added by-products during PAH remediation.